Multiple solutions for Kirchhoff elliptic equations in Orlicz-Sobolev spaces
نویسندگان
چکیده
منابع مشابه
Renormalized Solutions for Strongly Nonlinear Elliptic Problems with Lower Order Terms and Measure Data in Orlicz-Sobolev Spaces
The purpose of this paper is to prove the existence of a renormalized solution of perturbed elliptic problems$ -operatorname{div}Big(a(x,u,nabla u)+Phi(u) Big)+ g(x,u,nabla u) = mumbox{ in }Omega, $ in the framework of Orlicz-Sobolev spaces without any restriction on the $M$ N-function of the Orlicz spaces, where $-operatorname{div}Big(a(x,u,nabla u)Big)$ is a Leray-Lions operator defined f...
متن کاملMultiple Solutions for Quasilinear Elliptic Neumann Problems in Orlicz-sobolev Spaces
Here, Ω is a bounded domain with sufficiently smooth (e.g. Lipschitz) boundary ∂Ω and ∂/∂ν denotes the (outward) normal derivative on ∂Ω. We assume that the function φ :R→R, defined by φ(s)= α(|s|)s if s = 0 and 0 otherwise, is an increasing homeomorphism from R to R. Let Φ(s)= ∫ s 0 φ(t)dt, s∈R. Then Φ is a Young function. We denote by LΦ the Orlicz space associated withΦ and by ‖ · ‖Φ the usu...
متن کاملSobolev Spaces and Elliptic Equations
Lipschitz domains. Our presentations here will almost exclusively be for bounded Lipschitz domains. Roughly speaking, a domain (a connected open set) Ω ⊂ R is called a Lipschitz domain if its boundary ∂Ω can be locally represented by Lipschitz continuous function; namely for any x ∈ ∂Ω, there exists a neighborhood of x, G ⊂ R, such that G ∩ ∂Ω is the graph of a Lipschitz continuous function und...
متن کاملWeighted Sobolev Spaces and Degenerate Elliptic Equations
In the case ω = 1, this space is denoted W (Ω). Sobolev spaces without weights occur as spaces of solutions for elliptic and parabolic partial differential equations. In various applications, we can meet boundary value problems for elliptic equations whose ellipticity is “disturbed” in the sense that some degeneration or singularity appears. This “bad” behaviour can be caused by the coefficient...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Boundary Value Problems
سال: 2017
ISSN: 1687-2770
DOI: 10.1186/s13661-017-0865-y